DEVS Approximation of In ltration using Genetic Algorithm Optimization of a Fuzzy System
نویسنده
چکیده
The in ltration process is generally described by a nonlinear di erential equation, which can be solved by iteration methods such as a Newton-Raphson method. In this paper we propose a Discrete Event System Speci cation(DEVS) model for Green-Ampt in ltration. We show that this model can be approximated using Genetic Algorithm optimization of a fuzzy system. The fuzzy approximation is shown to be more accurate than the Taylor series approximation recently proposed.
منابع مشابه
A Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction
This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...
متن کاملROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL
In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optim...
متن کاملOptimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملOptimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کامل